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Introduction
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Many time-varying systems embed recursive filters (IIR)
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PyTorch

Lack of low-level differentiable operators
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Frame-wise frequency-sampling introduces mismatch
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functions matter
3. IIR ≠ FIR with 
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Contributions

1. Efficient time-domain training of time-varying recursive filters without 

approximation

2. No mismatch between training and real-time inference conditions

3. More accurate modelling of time-varying analog audio circuits
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torchlpc
An all-pole filter and low-level operator 
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pip install torchlpc



Current outputs

The all-pole filter

The minimal form of a recursive filter.
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Time-varying filter coefficients
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1. Implement all-pole filter in compiled language using Numba

2. Derive equations for gradient backpropagation

Efficient solution

9

torch.autograd.Function
x(n)

a(n)

𝒇

⛛𝒇

y(n)

⛛yℒ

ℒ
1

2

⛛xℒ

⛛aℒ



Linear filters as matrix multiplications
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𝑓0→N(         ,   )

11

x

∂ℒ/∂y

𝑓N→0(         ,   )… …

[a(0), a(1),...,a(N)]

… …



Gradients of a(n)
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Bonus: Check out the github repository for gradients of the initial 

conditions y(n)|n<0!



Virtual Analog 

modelling

White-box DDSP approach

1. Phaser (Small Stone)

2. Synthesiser (TB-303)

3. Compressor (LA-2A)
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Phaser (Electro-Harmonix Small Stone)
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Phaser evaluation

● FS = frequency 

sampling

● TD = time-domain 

using torchlpc

● Rows = training

● Columns = inference

For most settings, TD 

outperforms FS no matter 

the inference condition.
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Roland TB-303 Acid Synth
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● Sound matching

● 48 kHz and 32 sample hop size

● Modulating low-pass filter as 

time-varying biquad

● Configurations

○ TD (ours) vs. FS

○ Low-pass vs. general biquad coefficients

○ end2end LSTM



Synthesise

r evaluation

● MSS

○ TD + Biquad Coeff.

performs the best

● FAD

○ Biquad Coeff. + FS 

training + TD inferenc

17

Target Coeff. TD LSTM



LA-2A Leveling Amplifier
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≈ feed-forward compressor from the DAFx textbook.

MAE

target



Differentiable attack/release
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Compressor 

evaluation

● Methods 

○ FS (attack time = 

release time)

○ ∇FF (time-

domain)

● Conditions

○ Feed-forward 

compressor (FF)

○ LA-2A (LA)

● 2-3 times faster
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fast attack, slow release



Future Works

● Differentiable initial conditions

● Forward-mode automatic differentiation

● Higher-order gradients for advanced optimisation

● Extending to other effects, such as flanger, chorus, FDN, etc.
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Q&A
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Sound samples Code Neutone plugin
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