Differentiable All-pole Filters $\nabla_z \frac{1}{A(z)}$ for Time-varying Audio Systems

Chin-Yun Yu¹, Christopher Mitcheltree¹, Alistair Carson², Stefan Bilbao², Joshua D. Reiss¹, György Fazekas¹ ¹C4DM, Queen Mary University of London ²AAG, University of Edinburgh

Acoustics & Audio Group

Introduction

Many time-varying systems embed recursive filters (IIR)

D,r

Lack of low-level differentiable operators

Frame-wise frequency-sampling introduces mismatch

circular convolution

Contributions

- 1. Efficient time-domain training of time-varying recursive filters without approximation
- 2. No mismatch between training and real-time inference conditions
- 3. More accurate modelling of time-varying analog audio circuits

torchlpc An all-pole filter and low-level operator

pip install torchlpc

The all-pole filter

The minimal form of a recursive filter.

$$\underline{y(n)} = f(\mathbf{a}(n), x(n))$$
Current outputs
$$= x(n) - \sum_{i=1}^{M} \underline{a_i(n)y(n-i)}$$
Previous outputs

Time-varying filter coefficients

[**a**(0), **a**(1),...,**a**(N)]

Efficient solution

- 1. Implement all-pole filter in compiled language using Numba
- 2. Derive equations for gradient backpropagation

Linear filters as matrix multiplications

Gradients of a(n)

$$rac{\partial \mathcal{L}}{\partial a_i(n)} = -rac{\partial \mathcal{L}}{\partial x(n)} y(n-i)$$

Bonus: Check out the github repository for gradients of the initial conditions $y(n)|_{n<0}!$

Virtual Analog modelling

White-box DDSP approach

- 1. Phaser (Small Stone)
- 2. Synthesiser (TB-303)
- 3. Compressor (LA-2A)

Phaser (Electro-Harmonix Small Stone)

Table 2: Phaser evaluation results. "Method" refers to the training method; whereas the ESR was computed over the test dataset using both FS and TD at inference.

Phaser evaluation

(v))

Target

()))

TD

- FS = frequency sampling
- TD = time-domain using torchlpc
- Rows = training
- Columns = inference

For most settings, TD outperforms FS no matter the inference condition.

Dataset	L/F_{*}	Method	ESR (%)		
			FS	TD	
SS-A	$10\mathrm{ms}$	FS	1.46	1.53	
		TD	1.34	1.36	
SS-B	$40\mathrm{ms}$	FS	1.37	1.49	
		TD	1.35	1.34	
SS-C	$160\mathrm{ms}$	FS	1.62	1.80	
		TD	2.56	2.23	
SS-D	$10\mathrm{ms}$	FS	22.47	23.47	
		TD	21.64	23.33	
SS-E	$40\mathrm{ms}$	FS	15.43	16.69	
		TD	13.63	13.87	
SS-F	160 mg	FS	8.79	9.83	
	$100\mathrm{ms}$	TD	7.83	8.79	

Roland TB-303 Acid Synth

- Sound matching
- 48 kHz and 32 sample hop size
- Modulating low-pass filter as time-varying biquad
- Configurations

DA

- \circ ~ TD (ours) vs. FS ~
- Low-pass vs. general biquad coefficients
- $\circ \quad \text{ end2end LSTM} \\$

Synthesise r evaluation

• MSS

• TD + Biquad Coeff. performs the best

• FAD

• Biquad Coeff. + FS training + TD inferenc

Target Coeff. TD LSTM

.111.

Table 3: Synth evaluation results (FS = frequency sampling, TD =
time domain) with 95% confidence intervals for FAD scores.

			MSS		FAD V	/GGish
Filter	Method	$N_{\rm WIN}$	FS	TD	FS	TD
	FS	4096	1.66	1.78	2.62 ± 0.09	2.70 ± 0.13
		2048	1.64	1.65	$\textbf{2.18} \pm \textbf{0.07}$	2.35 ± 0.11
		1024	1.53	1.58	2.57 ± 0.08	2.27 ± 0.12
Coeff.		512	1.57	1.57	2.87 ± 0.10	2.46 ± 0.10
		256	1.49	1.48	2.25 ± 0.08	$\textbf{1.98} \pm \textbf{0.06}$
		128	1.53	1.55	3.37 ± 0.14	2.73 ± 0.12
	TD	-	-	1.38	-	2.49 ± 0.21
LP	FS	4096	1.96	1.98	2.59 ± 0.06	$\textbf{2.09} \pm \textbf{0.07}$
		2048	1.95	2.04	2.62 ± 0.07	4.52 ± 0.17
		1024	1.89	2.15	2.59 ± 0.08	4.18 ± 0.14
		512	1.83	2.92	$\textbf{2.13} \pm \textbf{0.06}$	3.38 ± 0.08
		256	1.82	2.89	2.17 ± 0.06	3.36 ± 0.12
		128	1.84	2.70	2.34 ± 0.09	3.93 ± 0.12
	TD	-	-	1.56	-	2.51 ± 0.10
LSTM 64	TD	-	-	1.76	-	3.24 ± 0.07

LA-2A Leveling Amplifier

≈ feed-forward compressor from the DAFx textbook.

Differentiable attack/release

Compressor evaluation

- Methods
 - FS (attack time = release time)
 - ∇FF (timedomain)
- Conditions
 - Feed-forward compressor (FF)
 - LA-2A (LA)

<u>. 111.</u>

• 2-3 times faster

Table 5: Summary of compressor ESR (%) evaluation.

Method	FF-A	FF-B	FF-C	LA-D	LA-E	LA-F
FS	2.362	0.00780	4.649	11.29	9.485	7.783
⊽FF	0.015	0.00785	0.017	10.58	9.356	7.639

Table 6: The learned parameters for matching a LA-2A.

Method	Data	R	CT (dB)	Attack	Release	$lpha_{ m rms}$	γ (dB)
	D	9.1	-11.66	$\begin{array}{c} 489.43\mathrm{ms}\\ 44.62\mathrm{ms} \end{array}$		0.008	0.69
FS	E	231.1	-19.08			0.606	0.34
	F	2.9	-26.00	$0.06\mathrm{ms}$		0.002	-0.81
	D	39.0	-26.58	$99.41\mathrm{ms}$	$0.06\mathrm{ms}$	0.703	0.74
∇FF	E	13.1	-12.41	$5.68\mathrm{ms}$	$420.56\mathrm{ms}$	0.978	0.54
	F	5.4	-20.14	$2.24\mathrm{ms}$	$229.15\mathrm{ms}$	0.973	-0.13

fast attack, slow release

Future Works

- Differentiable initial conditions
- Forward-mode automatic differentiation
- Higher-order gradients for advanced optimisation
- Extending to other effects, such as flanger, chorus, FDN, etc.

Q&A

 \mathbf{O}

